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A VECTOR-DYADIC DEVELOPMENT OF THE EQUATIONS 
OF MOTION FOR N-COUPLED RIGID BODIES 

AND POINT MASSES 

Harold P. Frisch 
Goddard Space High t Center 

INTRODUCTION 

The design and analysis of most spacecraft attitude-control systems is usually based upon 
the assumption that the spacecraft itself can be modeled adequately as one body or  as a 
collection of contiguous rigid bodies. 

When, in the analyst's judgment, two or  more bodies are required for representative 
modeling, the derivation of the system's equations of motion becomes laborious and 
subject to numerous errors in SIGN and judgment. The general-purpose digital program 
N-BOD has been developed to  relieve the analyst of this time-consuming and error-prone 
task. 

N-BOD assumes that the spacecraft can be modeled as a topological tree of rigid bodies, 
momentum wheels, and point masses. It also assumes that: 

All momentum wheels are symmetric and embedded within rigid boiies and that 
point masses exist only at limb ends. 

Unless otherwise directed by the user, all gyroscopic interaction torques are 
significant. 

All contiguous rigid bodies are connected by either zero-, one-, two-, or 
three-axis gimbals and point masses have either zero, one, two, or three degrees 
of relative translational freedom. 

N-BOD provides the user with two modes of output: 

It may be used to derive and to  output in vector-dyadic form on a line printer the 
complete nonlinear equations of motion of the system described to it. 

It may be used to solve numerically the equations of motion and to output any 
set of system-state variables. 

Several techniques are given in the literature for deriving the equations of motion for an 
arbitrary number of interconnected rigid bodies: namely, References 1 through 6. 



In each of the formalisms cited, the N-coupled rigid bodies must form a topological tree; 
that is, no closed paths are permitted in the system. 

Two basic approaches are developed in the literature which show how formalistic methods 
can be evolved which will ultimately define the torque-free dynamics of an arbitrary 
N-coupled-body system. 

Hooker and Margulies (Reference 2), and Roberson and Wittenburg (Reference 4) choose 
to write the equation of motion of each individual body of the connected system, taking 
into account in a very formalistic manner the interaction forces between adjacent bodies. 
Velman (Reference 1) uses what he refers to as a nested-body approach; that is, rather 
than having N-vector equations, one for each of the N bodies, the bodies a r?  grouped into 
N nests and the equation of motion of each nest is then defined. 

While the first method is well documented in the open literature, the nested-body method 
of Velman is outlined only in Reference 1. The equations of the nested bodies can, 
however, be derived from Velman's discussion and basic principles de f i ed  in most texts 
on rigid-body motion; for example, see Reference 7. 

In Reference 3, Hooker comes to the realization that by making use of the nested-body 
concept, the method used by both himself in his first paper and by Veltnan in Reference 1 
for handling constraints can be vastly simplified. Rather than switch from the discrete- 
body to  the nested-body approach as Hooker does in Reference 3. one may attain con- 
siderable simplification simply by starting from the nested-body concept. 

The purpose of this report is t o  combine the best features of Hooker's discrete-body 
approach and Velman's nested-body approach into a computationally efficient formalism. 
Material in this report wiU concentrate exclusively upon the theoretical development of 
the equations programed in N-BOD. 

BASIC SYSTEM 

The basic system to  be studied can be defined as an arbitrary numJer of rigid bodies, 
momentum wheels, and point masses coupled together in such a manner as to form a 
topological tree (no closed paths). 

Contiguous rigid bodies are assumed to be connected together by either a zero-, one-, two-, 
or three-axis gimbal; point masses are assumed to have either zero, one, two, or three 
degrees of relative translational freedom; momentum wheels are assumed to be symmetric 
about their spin axes and to be imbedded within rigid bodies. Rigid bodies which contain 
momentum wheels are referred to as gyrostats. 

Let 

N = total number of rigid bodies, gyrostats, and point masses 

M = total number of imbedded momentum wheels. 



To define the system mathematically, each body, momentum wheel, point mass, and hinge 
point must be assigned a unique label. The set of consecutive integers will be used. Let 
body 1 be the principal body of the system. AU other bodies are given distinct integer 
labels ranging from 2 to N inclusive. For simplicity of computation, it is convenient for 
the labeling of the bodies to he such that, along any topological path from body 1 to its 
end, the body labels are of increasing numerical magnitude. 

As a direct consequence of this labeling convention, the connection topology of the N-body 
system can be uniquely defined by the N X 1 connection matrix J (A), where 

J(1) = 0, and 

J(A) = label of the body contiguous to and inboard of body A, A = 2,3, . . ., N. 

All hinge points must be assigned unique labels. It is efficient to define them such that: 

Hinge point X - 1 is the point of connection between the contiguous bodies 
J (A) and A. 

All momentum wheels are given distinct integer labels from 1 to M inclusive. These may 
be randomly assigned. 

Let 

MO(m)= body label of the gyrostat in which momentum wheel m is imbedded. 

In order to distinguish between rigid bodies and point masses in the system, two sets of 
body labels are defined: 

S, = set of all body labels associated with rigid bodies, and 

S, = set of all body labels associated with point masses. 

The union of S, and S, is the set of all body labels S; that is, 

To define the equations of motion of the entire N-body system, the system is broken 
up into N distinct nests of bodies. The equation of motion for each nest is then defined 
and solved simultaneously with the equations for all other nests. 

The nests are each given distinct integer labels from 0 to N - 1, inclusive, such that: 

sk-~ = set of all body labels associated with those bodies which, relative to body 
1, are outboard of hinge point k - 1 of body k. The elements of 
Sk-, define the bodies which make up the nest k - 1. 

To define the motion of body A relative to a reference frame fixed at the origin of the 
nest Sk_, , the bodies lying along the topological path from hinge point k - 1 to  the 
center-of-1na.s of body A must be known. This information is given by the connection 



matrix J(A); however, it is notationally efficient to define the sets of body labels 

S k - l , ~ - l  such that 

Sk-~,h-l = set of all body labels associated with those bodies lying on the 
topological path from hinge point k - 1 to the center-of-mass of 
body A. 

As an aid to  the visualization of the contents of each set of body labels defined, a 
particular example is given which is general enough to bring out the salient features of 
the notation defined. 

Figure 1 defines a particular 10-body system with each body and hinge poin, given a 
distinct integer label. Note in particular, that the body labels are of increasing numerical 
value along any topological path beginning a t  hinge point 0; furthermore, momentum 
wheels can be numbered randomly. 

BODY L U E U  ARE NOT CIRCLED. 
H I W E  W I N 1  LABELS ARE CIRCLED. 
MOMENTUM W E L L  L A I E U  ARE SMOYYIY WltWlN 

Figure 1. bbel in~ Scheme for 10-body Example 



From the figure it can be seen that the contents of each set defined are: 

S~ = {1,2,3,4,5,6,9,10) 

S' = 17,8) 

S = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10)  

So = {1,2,3,4,5,6,7,8,9,10)  

s 1 = {2,3,4,5,  6,7,8) 

s 2  = (3,8) 

S3 = {4,5,6,7)  

s4 = {5 ,7 t  

s, = (4 
S6 = bt 
s, = ( 8 )  

S8 = 191  

s9 = (101 

M0(1)= 3 

MO(2) = 1 

MO(3) = 5 



The elements of the set Sk-I,A-I are given in the following example. 

All undefined sets in the above table are to  be taken as empty sets. Physically. 

s k - ~ , ~ - ~  = { limplies that body h is not contained in the nest k - 1. 

Each rigid body of the system is assumed to  have nonzero mass and rotational inertia. 
Each point mass is assumed t o  have nonzero mass and zero rotational inertia. 

Let 

m, = total mass of body X plus that of all momentum wheels imbedded in it, 

4, .. total inertia tensor of body h plus that of a11 despun momentum wheels in~bedded 
in it, about the composite body centersf-mass, and 

Iw* 
= inertia tensor of momentum wheel m about its centersf-mass. 

To define the linear or angular momentum of each body o r  nest of bodics in the system, 
position vectors locating hinge points and centers of mass must be given. 

Let 

a, = position vector from origin of inertial reference to  hinge point 0 of body I ,  

if, = position vector from hinge point J (A)  - I to the hinge point A - I of body A. and 

-* 
a, = position vector from hinge point A - I t o  the center-of-mass of body A. 



The exact position and labeling of each of these vectors is shown in figure 2 for the 
standard 10-body example. 

f i T , A L  
REFERENCE 

Figure 2. Positions and Labeling of Hingepoint and Centers!-mass Location Vectors 

The vectors and dyads appearing in the equations of motion are most naturally defined 
relative to certain body fixed-reference frames. 

Let 

Reference frame 0 = inertially fixed frame of reference having its origin at ihe 
inertial origin, 

Reference frame h = body X fixed f r m e  of reference having its origin at the hinge 
point A - 1. If body X is a point mass. the reference frame X 
is taken to be fixed relative to reference frame J(X) and have 
its orlgin at  hinge point X - 1. 

To  avoid explicit definition of coordinate systems and their associated kinematics, all 
equations are written in terms of vectors and dyads. Inevitably, this leads to  the necessity 
of diffemtiating, relative t o  an inertial reference frame, vectors which are more easily 



I 
i 

expressed in some other moving frame. Extensive use is made of the identities from 
i vector differential calculus that 
! 

where 

vector to  arbitrary point P from origin of reference frame i, 

velocity of P with respect to the inertial frame, 

velocity of P with respect to moving reference frame i, 

angular velocity ?f moving reference frame i with respect to the inertial frame, 

inertial velocity of the origin of reference frame i, 

= acceleration of P with respect to  the inertial frame, 

+ 
pi = inertial acceleration of the origin of reference frame i, 

4 X = linear acceleration of P due to angular accsleration of reference 
frame i, 

5, X (2, X = centripetal acceleration of P due to rotation of reference frame i, 

2 Gi X $ = Coriolis acceleration of P, and 

'9 = apparent acceleration of P relative to reference frame i. 

EQUATIONS OF MOTION (VECTOR-DYADIC FORM) 

The entire N-body system is free to translate and rotate relative to a fixed inertial origin. 
All contiguous rigid bodies are free to rotate relative to each other, point masses are free 
to  translate relative to their respective contiguous bodies, and all momentum wheels are 
free to rotate about their axis of symmetry relative to  the gyrostat in which they are 
imbedded. 



Let 
+ 
GI,, = linear momentum of body A relative to the inertial origin, 
-+ 
I,, = angular momentum of body X relative lo  the inertial origin, 

= angular momentum of momentum wheel m relative to the inertial origin, 

+ 
FA = resultant of external forces acting on body A ,  

& = resultant of external torques acting on body A, and 

'wm 
= resultant of external torques acting on momentum wheel m. 

Then from Newton's three fundamental laws of motion, the equations of motion for each 
body A and each momentum wheel imbedded therein are given by 

+ -b 

'rn =@wm , m:MO(m)=X, 
where 

m: UO(m) = h = all m such that MO(mj = X . 
Similarly, the equations of motion for the nest of bodies k - 1 are 

when 

sum over all bodies X contained in the nest k - I .  and 

k s k  1 



m:MO(m) eS,-, = ali m such that MO(m) is contained in the nest k - 1 .  

The equations of motion for the entire N-body systtm are obtained by solving 
simultaneously 2N + M vector equations. These equations may be either in the discrete-body 
form of Equations (41, (S), and (6) or  in the nested-body form of Equations (7), (8), and 
(9). This analysis follows the nested-body form. 

Between each pair of connected contiguous bodies, forces and torques of constraint exist 
which limit the number of degrees of relative freedom from six to, at most, three. 

Let 
+ 
F f k - ~  = resultant force of constraint acthg on body k t h r o u d  hinge poln t k - 1 , 

Re, = resultant torque of constraint acting on body k through hinge point k - I ,  and 

= resultant torque of constraint acting on wheel m preventing motion about 'Ym any axis normal t o  its spin axis. 

For most problems of practical interest, mechanisms such as spring, dampers, motors, 
and so forth exist between the cor~tiguous bodies. 

Let 

= resultant furce acting on body k due to all mechanisms existing between 
bodies J(k) and k at hinge point k - 1, 

%, = resultant torque acting on body k due to  all mechanisms existing betr - 
bodies J(k) and k at hinge point k - 1, as:d 

6&, = resultant torque acting on momentum wheel m ~ Q J L  to all mech 
existing between it and body M q m ) .  

It Should be noted that at every hinge point of the system (with the exception of hinge 
point 0): the forces and torques defined above exist in equal and opposite pairs. Thra, for 
any nest of  bodies containing the hinge point k - I ,  these forces and torques are internal t o  
the nest and have a resultant effect of zero. At the hinge point of the nest, however, they 
an external. 

External forces may be present which act on the N-body system. These may be locally 
applied, distributed throughout, or  applied only o w r  selected portions of the system. (It 
is assumed that external forms are not applied directly t o  momentum wheels.) 

Let 

= resultant external force applied to point i of body h, and 

= vector from center-of-mass of body h to  the point i at which the force + 
F&! is applied. 



For Newton's laws of motion to  be applied, motion must bbe defined relative to  the 
inertial origin. 

+ 
71, A position vector from inertial origin to  center~of-mass of body X, and 

-b 

%-I ,A 
= position vector from hinge point k-l to  center-of-mass of body A .  

From the definitions given in !' e previous section, it follows that 

and 

From these definitions, the resultant of the external forces acting upon the nest k-l is 
given by 

while the resultant of the external torques acting upon the nest k-I, measured relative to  
the inertial origin, is 

and the resultant torque acting upon momentum wheel m is 

-+ = -+c 
-+ 

w *w", + CL,. 

The vector equations which completely define the motion of the nest k-l are obtained by 
direct substitution of Eqltations ( I  21, (13), and (14) into Equations (7), (8)' and (9). 



where, for the sake of notation compressiou, the following definitions have been made: 

and 

The inertial momentum for each body h and wheel m may be defined in terms of their 
respective mass and inertia properties and the system-state variables. 

inertial angular velocity of bady A, 

angular velocity of body h relative to  body J(A), 

inertial angular velocity of momentum wheel m, 

angular velocity of momentum wheel m relative to body MO(m), and 

angular momentum of wheel m about its own center-of-mass, relative to body 
MO(m). 

From definitions provided in virtually all texts on rigid-body dynamics, it follows that: 

a. Body A, a point mass, rigid body, or gyrostat 



b. Body A, a point mass 

-b - -b 

L ~ . ~  - 7 1 , ~  mAilL' 

c. Body A, a rigid body 

d. Body A, a gyrostat 

e. Momentum wheel m 

+ 2 
H, = Hm + I,,, 'A m 

It has been assumed that the composite N-body system has at most six degrees of freedom 
relative to  an inertial reference, contiguous bodies have at most three degrees of relative 
freedom, and momentum wheels have only one degree of relative freedom. Thus, there 
exists at most 3(N + 1) + M degrees of freedom for the N-body system, and its motion 
can be completely defined by exactly N + 1 + M coupled-vector equations. 

These coupled-vector equations are given by the following: 



a. For ktSR 

This condition implies that body k is either a rigid body or a gyrostat and that the 
nest k-l has at most three degrees of relative rotational freedom. The interaction 
force between bodies k and J(k), which constrains relative translational motion, is 
given from Equation (IS) by 

The rotation equation for aU nests k-l having krS, is obtained by substituting 
Equations (2 1 ), (27), and (3 1) into Equation ( 16): 

b. For ktS, 

This condition implies that the nest k-l contains only the point mass labeled body k, 
and that the nest k-l has at most three translational degrees of relative freedom. The 
translational equation for the nest k-l is from Equations (1 5 )  and (2 1): 

c. The composite system is free to  translate relative to the inertial reference. The 
translation equation for the composite system is from Equations (15) and (21): 

d. Momentum wheels are defined to have one degree of relative rotational freedom. 
The relative momentum equation for momentum wheel m contained in body A, 
derived from Equations (1 7) and (30), is given by 

These equations of motion must now be put into a co~yputationally efficient form. 



Accordingly, the inertial acceleration of the center-of-mass of body A can, by making use 
of Equations (2 ) ,  (3), (lo), and (1 l) ,  be written as 

where the open dot implies differentiation with respect to  the reference frame A fixed at 
hinge point A- 1. 

Considerable symmetry in the final form of the equations of motion is obtainable if the 
inertial angular acceleration vectors are expressed in terms of the rclative angular 
acceleration vectors. From the definitions of inertial and relative angular velocities 

and hence 

Substitution of Equation (38) into (36) along with a rearrangement of terms leads to 



It is also convenient to make use of Equations (2) and (28) to  write 

where MO(m) = h and, again, the open dot implies differentiation with respect to the body 
h fixed reference frame. 

Substitution of the vector identities given by Equations (38), (39), and (40) into the 
system equations of motion, along with a rearrangement of terms yields: 

a Rotation equation for the nest k-1, keS, 



b. Translation equation for the nest A - 1 ,  kS, 



c. Translation 

i tc m~ 1 
bSo 

equation 

r 

C 
usla 1 

C 
1 . 

for composite system 

d. Momentum equation for wheel m:MO(m) = h 

It is desirable to condense these vector equations eventually into a concise matrix format. 
To do this, however, several vector operations must be replaced by equivalent vector- 
dyadic, scalar-product operations. In particular, one can make use of the following: 

a. Multiplication of a scalar and a vector 

0 0 0 0 
-b mAb, = m A l  a,, 

where 

1 S unit dyad. 

b. Vector product of two vectors 



where 

and P i s  the tensor operator which transforms vectors into skew-symmetric tensors 
@f rank two (dyads). 1f Bis an arbitrary vector with components { v,, v,, v,) , then 

c. Vector triple product 

where 

To establish symmetry conditions, it must be noted that the components of the 
pseudo-inertia tensors GE, +, and Gt, ,,,,when written in the same coordinate system, 
obey the following matrix transpose relationship: 

The vector-dyadic form of the equations of motion is obtainable by substitution of 
Equations (45) through (52) into Equations (41) through (44). That is: 

a. Rotation equation for the nest k-1, keS, 



b. Translation equation for the nest A-1, XES, 



c, Translation equation for composite system 

2 
oi ieS, 

ieS, 

d. Momentum equation for wheel m: M q m )  = X 

-b 
2 -P -b 

= - w, X (Iw . 2, t H,) t CLm t 4bm. 
m (58) 

EQUATIONS OF MOTION (MATRIX FORM) 

In the previous section, the equations of motion of the coupled N-body system have been 
derived in vector-dyadic form from the principles of linear and angular momentum. A 
cursory examination GI kquations (55) through (58) is sufficient to note that terms 
associated with the same gyroscopic effects have been grouped together. In putting the 
equations into a matrix format it is convenient to make use of partitioned matrices so as 
to retain this separation of effects. 

Accordingly, one may define: 

{ = (N + 1) X 1 column matrix of relative acceleration vectors. The vector 
element 4 in row k is 

a. Body k a rigid body WR 



b. Bod9 k a point mass keSL 

c. Total system k = N +, 1 

[ ] M X I column matrix of momentum-wheel relrtive angular acceleration 
vectors The vector element in row m is 

x (N + 1) X (N  + 1) symmetric matrix of pseudo-inertia tensors. The tensor 
element in row k, column i (i > k) is from Equations ( 5 9 ,  (56), and (57), given by 

a. keS,, i d k - ,  i d ,  (Nsst i-1 is a nest of at least one rigid body within the nest k-1). 

kSi- 1 kSi- 1 

X I S ;  

For k = i, XkJ is the inertia tensor of the nest k-1 about the hinge point k-1. For 
k # i, i i  defines an inertia cross-coupling tea -or between nests k-1 and i-1. 

b. keS,, ieS,, i d L  (Nest i-1 is a nest of one point mass within the nest k-1.) 

&, is the tensor form of the mass moment of the nest i-1 relative t o  the hinge point 
k-1. 

c, kcS,, i lS , . ,  (Nest i-1 is not contained within the nest k-1.) 

d. keSL, i = k (Nest i- 1 is identical to nest k- 1 and contains one point mass.) 

Xkj is the tensor form of the mass of the nest i- 1. 



e. keS, eke, (Nest i-1 is not contained within the nest k-1.) 
9 

f. keS,, i = N + 1 (Nest k-1 has at least one rigid body.) 

Xkh is the tensor form of the mass moment of the nest k-1 relative to the hinge point 
k-1. 

g. LS,, i = N + 1 (Nest k-1 has one point mass.) 

XkJ is the tensor form of the mass of the nest k-1. 

qJ is the tensor form of the total system mass. 

It should be noted that when the tensors defined abwe are all expressed relative 
to  a common frame of reference, the matrix [X I  is symmetric. This is easily 
proven by application of Equations (SO), (5 1 ), and (54). 

LIC] = (N + 1) X M, rectangular matrix of momentum wheel inertia tensors The 
tensor element in row k, column m is from Equations (55) and (56) given by 

a. M u m )  E S ~ . ~  (The rigid body in which momentum wheel m is imbedded is within 
the nest k- 1 .) 

b. M q m )  JSk., or k = N+l (Momentum wheel m is not within the nest k-1.) 

LICJ = M X (N + I), rectangular matrix, the transpose of [lc], 

[P] - M X M, square matrix of momentum wheel inertia tensors. From 
Equation (58), the tensor element in row m, column n is given by 



(qc 1 = (N + I ) r: I. column matrix of forces and torques asrxiated with 
centripetal and Coriolis acceleration effects. Note that the force 
associated with the mass of body X and its combined centripetal and Coriolis 
acceleration can be expressed as 

(75) 

From Equations (551, (561, and (57) the vector element qf Ir, r e W  k is 

a. keS, (The nest k- 1 hes at least one rigid body.) 

qi is the resultant torque at hinge point k- 1 due to the centripetal and Coriolis 
acceleration of each body in the nest k- 1. 

b. keS, (The nest k-1 contains one point mass.) 

qi,, is the resultant iorce acting on the composite system due to the centripetal 
and Coriolis acceleration of each body. 



{ ' 1  = (N + 1 ) X I ,  column matrix ur torques associated with the inertial 
angular velocity of the body fixed reference frames and the inertial 
angular momentum of the rigid bodies and gyrostats about their respective 
centers-of-mass. Note that tile inertial angular momentum of body X 
about its own center-of-mass is given by 

From Equation (55) the vector element q\ in row k is 

a. kcS, (Nest k-1 contains at least one rigid body.) 

q: is the rate of change of angular momentum of all rigid bodies aird gya.ostats in 
the nest k-1 about their own centeidf-mass due to  the inertiai angulrr velocity 
of their respective body lived-reference frames. 

(tlwt M X 1, column matrix of torques associated wit:, the inertial angular 
velocity of the gyrostats fixed reference frames and the ineeial angular 
momentum of each momentum wheel about its respectivi center-af-mass. 
Note that the inertial angular momentum of momentum wheel m imbedded 
in body X about its own center-of-mass is given by 

From Equation (58) the vector element in row m is 

1: is the rate of c h a n p  of angular momentum of m o m e n t a  wheel rn about its own center- 
of-mass due t o  the inertial angular velocity of the reference frame fixed in the gyrostat 
in which it is imbedded. 



Also - ~ 

(gl) = (N + I )  X 1, column matrix of the forces and torqces of constraint, 

[ ~ l ]  = (N + 1) X I, column nhatrix of the forces and torques associated with 
mechanisms existing be tween contiguous bodies, and 

[ i l l  = (N + I) X I, column matrix of the forces and torques associated with 
causes external to the N-body system. 

The vector element in row k of 

a. keS, (Nest k- 1 contains at least one rigid body.) 

'Chis is the resultant torque external to the nest k- 1 about the hinge point k- I. 

b. kaS, (Nest k- 1 contains one point mass.) 

+ q + $;1 + 9 p  = Fiel  t + ;y. 
(85)  

This is the resultant force external to ihe nest k-I. 

c. k = N +  1 

This is the resultant force external to the composite system. 

] = M X 1, column matrix of the constraint torques acting on the momentum 
w!.eels, and 

} = 
M X I, column matrix of the torques associated with mechanisms existing 
be. ween the rnomentum wheels and the bodies in which they are 
imbedded. 

The vector o!ement in row m of 



This is the resultant tarque external to  and acting on the momentum wheel m. 

Making use of the above notation, the simultaneous vectordyadic equations of motion 
given by Equations ( 5 5 )  through ( 5 8 )  may be expressed in partitioned matrix form as 

To solve these equations numerically, they m ~ s t  be nut in the form of a set of 
simultaneous, scalar-differential equations. The difficulty with this step is in solving for 
or eliminating the unknown forces and torques of constraint. 

In theory, if the N-body system has a total of N, degrees of freedom and N, holonomic 
conditions of constraint, then it is possible to  generate a set of 

generalized coo..dinate equations which are independent and completely define the systen 8 

dynamics 

In Reference 2, Hooker and Margulies present a method for constraint elimination. The 
mathod essentially derives expressions for the constraint torques in terms of system 
parameters and then substitutes them into the equations of motion. From a computational 
viewpoint, this method is cumbersome since the order of the system of equations 
remains unchanged and several additional matrix inversions are required. 

In Reference 3, Hooker presents another method for constraint elimination which 1s 
well suited for digital computation. The method defines a set of N, free coordinate 
vectors which span the NF dimensional vector space! in which motion is possible. By 
application of orthogonality conditions, forces and torques of constraint can be 
eliminated and a set of N, simultaneous scalar equations derived which completely 
define the system's motion in the N, dimensional vector space. 

To accomplish this, Hooker notes that at every hinge point it is possible to define a triad 
of linearly-independent free and locked coordinate vectors. Physically, if one imagines 
that contiguous rigid bodies are connected by either a zero-, one-, two-, or three-axis 
gimbal, the free coordinate vectors correspond to unit vectors fixed along the gimbal 
axes, and the locked coordinate vectors correspond to unit vectors fixed along axes about 
which motion is totally constrained. 



Since the equations of relative motion are vector equations, at each hinge point the 
relative vclocity vector is expressible in terms of a linear combination of the fret. 
coordinate vectors while the constraint torque is expressible in terms of a linear 
combination of the locked coordinate vectors. These vectors are orthogonal to each other. 
By forming the appropriate vector scalar products, the scalar equations which define 
the components of motion about or along each free coordinate vector can be obtained 
and the need for evaluating the wnstraint torques circumvented. 

To apply Hooker's technique, several kinematic related definitions must be introduced. 

KINEMATICS OF THE N-BODY SYSTEM 

The subject of kinematics to which this section addresses itself is concerned exclusively 
with determination of the relative orientation and rate of each body in the N-body system. 
The causes to which relative motion may be ascribed are not of interest. User convenience 
and computational efficiency have been the primary factors used in determining which 
kinematic methods should be applied. 

It is the author's opinion that there is no one kinematic techniquc which is best for all 
possible problems Accordingly, the program N-BOD has been programmed to give the 
user a limited selection of kinematic options. Unless directed otherwise, direction cosine 
methods are applied. No attempt is made to artificially orthonormalize the computed 
transformation matrices At the user's option, an algebraic quaternion method can be 
used This is simply a generalization of standard Euler angle techniques. Selective use of 
both direction cosine and algebraic quaternion methods should permit the user to 
circumvent the common kinematic problems of orthogonalization and gimbal lock. 

At the inertial origin and at every hinge point of the N-body system a reference frame 
has been defined; 

[x: X0 x!) = reference frame 0, fixed inertially at the inertial origin, and . 2. 

{x: Xi Xt ) = reference frame A, fixed at h i n s  point A-1 of body A; . . 
if body A is a point mass, the coordinate axes are respectively 
parallel to  those of reference frame J(X). 

It is desirable to provide the user with the ability to specify an arbitrary "at rest," or 
"nominal zero internal stress" orientation for each reference frame. Accordingly let 

3 ,  
= transformation matrix which takes vectors from body J(A) fixed 

coordinates into body A fixed coordinates when the system is at rest 
in the nominal zero internal stress state. 

To completely define the at-rest state of the N-body system, translation as4 momentum 
wheel orientation conditions also must be defmed. 



a. The entire N-body system is frce to translate relative to the inertial origin; 

3, = vector from the inertial origin to  the xigin of reference franie i 
(the centersf-mass of body I). 

b. Point masses may be given an at-rest position relative to  their respective 
contiguous bodies; 

Nzl = vector from hinge point A-1 to the at-rest position of the poh 
mass A. 

c. The rotation angle through which a momentum wheel has rotated can be 
important for special cases. Rather than introduce a wheel-fmed reference frame, 
it is defined that the at-rest angle of the wheel, relative to the body in which it is 
imbedded, is zero. There is no loss of generality here since all momentum wheels 
are by definition symmetric. 

In order to eliminate the forces and torques of constraint in the equations of motion, a 
triad of unit coordinate vectors is defined at every point in the system about or from 
which relative motion is measured. 

Let 

No = total number of coordinate vector triads. For a system of N coupled 
bodies and M momentum wheels 

N, = total number of free coordinate vectors; these span the N, dimensional 
vector space in which motion is possible. 

N, = total number of locked coordinate vectors; these span the N, dimensional 
vector space in which motion is totally constrained. 

+ + 
[ql,B,. . . , &,I = set of unit free coordinate vectors which span the N, 

dimensional vector space in which motion is possible. 

[ , . . . , } = set ot unit luclizd coordinate vectors which span the N, 
dimensional vector space in which motion is totally constrained. 

19,  ,O,,. . . , ON,] = set of scalar parameters which at any instant of time 
define the relative displacement about or along each respective free 
coordinate vector (analogous to Euler angles). 

[ e2 . . . , ] = set of scalar parameters which define the time rate of 
change of the respective displacement parameters (analogous to 
Euler angle rates), 



To uniquely dbfme each of the free and locked coordinate vectors, several definitions 
must be made. In principle the vectors may be randomly labeled; howe*:er, for 
computational purposes it is advantageous to choose a particular numberi, !g stt;u,n&. 

Each triad of coordinate vectors may be assigned a label. The origin of the triad is the 
point from or about which relative motion is measured. That is: 

a To measure the relative rotation of rigid body k, the triad k is defined to ha, 3 

its origin at hinge point k- 1. 

b. To ineasurc the relative translation of point mass k, the triad k is defmecl to have 
its origin defined a~ ,ts at-rest position. 

c. To measure the relative translation of the center-of-mass ot oody 1 relative to the 
inertial reference, the triad N + 1 is defmed have its origin at the inertial origin. 

d. To measure the relative rotation of momentum wheel m, the triad N + 1 + m is 
defined to have its origin at the center-of-mass of mor ~entum wheel m. 

The mix of free and locked coordinate vectors in each triad is defined by the integer 
function P ( A )  where 

P(A) = total number of locked coordinate vectors in the triad A. 

The free and locked coordinate vectors which make up triad A are: 

a. P(h) = 0 Three degrees of freedom 

b. P(A) = 1 Two degrees of freedom 

c. P(A) = 2 One degree of freedom 

and 

d. P(X) = 3 Zero degrees of freedom 

where for any A, A = 1 ,  2 ,  . . . , No 



and 

If body A is a point mass, the free and locked coordinate vectors of the triad A are 
mutually orthogonal and fixed with respect to the reference frame 1. 

If body X is a rigid body, then by definition it is connected at hinge point A-1 to body 
J(A) by either a zero-, one,  two-, or three-axis gimbal. The numerical ordering of the free 
coordinate vectors is defined by the following convention: 

a. For a one-, two-, or three-axis gimbal, the first rotation is about through the 
angle Oj. The free vector < is fixed with respect to the reference frame J(X). 

b. F Q ~  a two- or three-axis gimbal, the second rotation is about %+, through the 
angle Oj+, . For a two-axis gimbal, the free vector $, is fixed with respect to 
reference frame A. For a three-axis gimbal, the free vector a', is defined by the 
vector cross-product 

c. For a three-axis gim~al, the third rotation is about ?$+, through the angle Oj+, . 
The free vector ?(+, is fixed with respect to the reference frame A. 

If body A is a rigid body, the numerical ordering of the locked coordinate vectors at the 
hinge point is arbitrary. With the exception of the case of a two-axis gimbal, locked 
coordinate vectors are fixed in reference frame A. For a two-axis gimbal, the locked 
vector $ must be orthogonal to both free vectors q and ?&+, . Thus, it is defined by the 
vector cross-product 

If  A = N + 1, the free and locked coordinate vectors are fixed with respect to the inertial 
reference frame. They are defined by convention to be aligned respectively with the 
Xy , Xi ,  and X: coordinate axes. 



If X = N + 1 + m, the free vector is aligned with the spin axis of momentum wheel m which 
is fixed in reference frame MO(m). The two locked coordinate vectors are fixed norn~al 
to each other and to  the spin axis in a wheel fixed-reference frame. 

INITIAL ORIENTATION OF THE N-BODY SYSTEM 

In defining the relative orientation of ;he bodies in an N-body system at time zero, it is 
undesirable t o  start from the hypothesis that the elements of the initial transformation 
matrices are given. If the response of a complex system under different initial conditions 
is t o  be studied, the computation of initial transformation matrices can be tedious. It  is 
desirable t o  define a set of physically realizable, independent parameters which can be used 
to construct iriter~tally the initial conditions necessary for computation. 

The scalar parameters which define relative displacement and rate about and along the free 
coordinate vectors provide a desirable set of parameters t o  work with. 

Since relative motion takes place only about or  along the free coordinate vectors, the 
initial orientation can be given by stipulating exactly N, independent relative displacement 
parameters, one associated with each free coordinate vector. Thew parameters are taken 
relative to the nominal zero stress position. 

Let 

[::7J(r,] = transformation matrix which takes vectors from body J(A) fixed 
coordinates to body A fixed coordinates at time zero. 

To compute all initial transformation matrices [:.&(,,I, A = 1, 2, . . . , N, it is not 
possible to assume that all gimbal axes will be parallel to  body fixed-coordinate axes. It 
is therefore most convenient to mzke use of the quaternion techniques reviewed briefly 
in the appendix to  compute the initial transformation matrices. 

Making use of the matrix operator .'and the quaternion operator 2 defined in the appendix, 
the initial value of the transformation matrix [ : ;Y~(~]  , A = 1, 2, . . ., N is given hy 

a. One-axis gimbal, reference frame I, aligned with body A fixed axes 

b. Two-axis gimbal, reference frame I, aligned with body A fixed axes 



c. Three-axis gimbal 

where 
- 

INtII = cos dm12 t 9 ( [Tm} I ~ )  sindrn/2 

SYSTEM ORIENTATION VIA DIRECTION COSINES 

To integrate the equations of motion of the system it is convenient to refer all vectors and 
dyads t o  a common frame of reference. Depending upon application, this may be either the 
inertially fixed frame of reference or the coordinate axes fixed in body 1. Generality is 
retained since the system can always be relabeled so that body 1 does contain the com- 
puting frtme of reference. 

Let 

[,;<I = transformation matrix which takes vectors from the computing frame 
of reference into body X fixed coordinates at  time t ;  t > 0, A = 
1 , 2  , , . . ,  N. 

-b 
To transform the vector R given relative t o  the computing frame coordinates into body A 
fixed coordinates apply 

To transform the tensor R given relative to  the computing frame coordinates into body X 
fixed coordinates apply 

where 



If the computing frame is chosen to be the inertial-reference frame, then c = 0 and 

where 

If the computing frame is chosen t o  be the body 1 fixed-coordinate frame, then c = 1 and 

Since the components of the N-direction cosine transformation matrices [,,Tc] are time 
varying, they must be continuslly updated. An expression is required to define the time 
rate of change of the components of [,.&I . These qaantities can then be integrated 
and the time histories of the matrices defined. 

Let 
+ 
R = arbitrary vector fixed in body A, and 

-b = angular velocity of the body A fixed-reference frame relative to the 
computing frame of reference. 

From vector differential calculus 

where the presuperscript on the d / ' t  operator defines the reference frame in which 
differentiation is referenced. But R is fixed in body A, therefore 



Let 
+ = column matrix of the components of R relative t o  the computing 'Ic frame, and 

( c A ] c  = column matrix of the components o fCGA relative to  computing frame. 

Recall that if 

then the matrix operator 8 can be defined such that 

and vector Equation ( 109) can be written in matrix notation as 

where the dot over the matrix implies differentiation of each matrix element with 
respect t o  time. 

From the definition of [,:Tc] note that 

Since R is fixed in body A 

and 



+ 
It follows from Equations ( I  I?) and (1 14), since the vector R is arbitrary and fixed in 
body A, that 

Take the transpc~se of both sides and premultiply these by [A .~ -c ]  to obtain 

Note that since 

Equation ( 1 17) can also be expressed as 

Equation (1 17) defines nine differential equations, one for each direction cosine. To 
completely define the relative orientation of the N-body system, this implies that 9 N  
direction cosine equations must be solved simultaneously with the system equations of 
motion. 

Due to the ~rt t~onornial i ty  of the direction cosine matrix, only six of the nine equations 
need be integrated. The solution to these equations can then be used to compute 
algebraically the three remaining quantities. 

SYSTEM ORiENTATlON VIA QUATERNION METHODS 

The computation of transformation matrices may be accomplished by either integrating 
a set of kinematic differential equations, such as direction cosines, or algebraically by 
application of quaternion methods. Rather than set up a series of quaternion differential 
equations, as is comrnanly done, it is possible t o  make use of the free coordinate vectors 
and the respective angles of rotation to simply construct the required transformation 
matrices algebraically. It becomes a debatable question as t o  which technique is 
optimum for all problems. 

To apply quaternion methods, the same procedure cscd to  obtain the initial orientation 
of the N-body system is used. 



That is, from 

where 

- 
( d l  

one-axis gimbal i ,  = h 

two-axis gimbal I, = >. 

lN? l I  l l f l 2  I , ~ A  three-atis gimbal . 

It should be noted that the above equations reduce to one, two, or three successive 
Euler-angle rotations when the free coordinate vectors are aligned with coordinate axes 
in the at-rest state. 

RELATIVE RATE AND DISPLACEMENT 

At any hinge point k-I, the relative angular or linear rate between the contiguous bodies 
J(k) and k can be expressed as 

where the summation is carried over all free coordinate vector indices defined at the 
origin of the triad k. 

If body k is either a point mass having one, two, or  three degrees of relative translational 
freedom or a rigid body having one or two degrees of rotational freedom, the relative 
displiicensnt parameter 0, +, along or about the free vector c,, is obtained from the 
equation 





To obtain a solution of this equation, the f o r n s  and torques of constraint, defined by 
the elements of the matrices { # C ' /  and (0'' 1, must be either analytically defined or  
the equations restructured so as t o  eliminate them. The latter approach, used by Ilooker. 
is adopted here. 

To restructure the equations and eliniinate the necessity for evaluating the forces and 
torques of constraint, the procedure outlined a n  page 27 in the section entitled Equations 
of Motion (Matrix Form) is followed. 

From Equation ( 1  23), 

where k = N + 1 implies the inertial origin. In a paralle! mdnner 

where the index j is defined by Equatim (91). 

Differentiation yields 

and 

where the cloxd and open dots imply, as before, differentiation with respect to  the 
inertially fixed and locally fixed referenct: frames, respectively. 

In order to  put Equaticcls ( I  34) t h r o ~ ~ g h  ( 137) into the matrix format rqiiircd for 
substitution into Equation (88 ), the following definitions are ~nade. 

L q J  = (R + 1 )  X (N,  - M) rectangular matrix of the free coordinate vectors. 

The vector element in row k, column m is 

if free vector rn is defined between bodies J(k) and k 

%,* = if not .  



if free vector m is defined at the inertial origin 
( 139) 

if lot. 

M X M square matrix of th? free coordinate vectors existing along 
momentum-wheel spin axes The vecto, elcmznt in row m, column n is 

(N, - M) X 1 colun~n matrix of scalar ratcs about or along the free 
coordinate vectors existing between bodies and a t  the inertial reference. 
The scalar element in r3w m is dm . 
M X 1 column matrix of momentum-wheel relative rates. The scalar 
element in row m is t? . 

wm 

Making use of the matrix notation, one mav write 

I I-% { !I [!!;I 
O l h  

and 

To eliminate the forces and torques of constraint, note that at every point from o r  about 
which relative motion is measured, the constraint vector is normal t o  all free coordinate 
vectors defined there. Thus it follows that the matrix vector-scalar product equation 



can be used to eliminate the forces and torques of constraint from Equation (88) and 
restructure it into a set of simultaneous sca!ar equatiom 

Direct application of Equations (141) through (143) in Equation (88) yields 

O l h  

Equation (144) defines the N, scalar equations which completely define the motion of the 
coupled N-body system. These equations have been programmed for numerical solution 
and form the basis for the digital computer program N-BOD. 

By intent, the only elements in Equation (144) which have not been extensively discussed 
are the elements of the matrices 

The elements of these matrices cannot in general be generalized. They define the forces 
and torques due to mechanisms existing between contiguous bodies, such as springs, 
dashpots, motors, and so forth and the forces and torques associated with effects external 
to  the N-body system. The inclusion of several effects often encountered will be discussed 
in the following sections. 

FORCES AND TORQUES DUE TO NONGYROSCOPIC EFFECTS 

Most problems of practical interest involve the inclusion of one or more nongyroscopic 
effects into the equations of motion. For example: 

a. Contiguous bodies may be viscoelastically coupled at their respective hinge 
points. 



b. Control systems may exist which, based upon a given set of control laws: 
activate motors that drive contiguous bodies relative to each other or alter the 
angular rates of momentum wheels. 

c. Thrusters controlled by an active control system way exist at various points in 
t5e N-body system. 

d. The system may be disturbed by one or more forms of environmental loading 
such as that due to  gravity, gravity gradient, thermal, solar pressure, 
aerodynamics, e tc. 

It is a relatively simple matter t o  include any or all of these effects in the matrices 

defined in Equation ( 144). 

ELASTIC COUPLING OF CONTIGUOUS BODIES 

Springs can be placed between any pair of contiguous bodies. These restrict relative 
rotational motion for rigid bodies and relative translational motion for point masses. The 
springs may be either linear o r  nonlinear; however, for simplicity, this discussion 
considers only linear springs which restrict motion about or  along free coordinate axes. 

Consider the nest k - 1. Note that at every hinge point between bodies contained within 
the nest k - 1 spring forces and torqiles appear in equal and opposite pairs and thus 
exactly cancel each other. At hinge point k - 1, however, the reactive spring torque 
(force) is external to the nest k - 1 and must be treated as an external disturbance. 

.&ume that dm is a free coordinate vector defined at  hinge point k - 1 and that the 
motion about or along is restrained by a linear spring. 

Let 

Km = spring constant of the linear spring which restrains motion about 
+ or along the free coordinate vector qm ; 

then 

- K, 9,  T,  = spring torque (force) associated with the relativc angular 
(translational) displacement Om of the contiguous bodies k and 
J(k) about (or along) the free coordinate vector Tim. 

It follows that the net reactive spring torque (force) at hinge point k - 1 is - 



where the summation extends over all free coordinate indices m defined at hinge point 
k - 1 of body k, for k = N + i the free coordinate indices defined at the inertial origin 
are used. 

This vector quantity must be added to  the kth row of {@"I}. 

Similarly, if the momentum wheel n is elastically coupled to the body in which it is 
imbedded, the spring torque 

where 

must be added t o  the nth row of [@H2]. 

DISSIPATIVE COUPLING OF CONTIGUOUS BODIES 

Dampers can be placed between any pair of contiguous bodies t o  retard relative motion. 
For simplicity, only linear viscous-type damping mechanisms are considered. Nonlinear 
dissipative devices such as hysterisis or Coulomb friction dampers can be incorporated 
in the formalism; however, their modeling can become quite complex. 

Consider the nest k - 1. As in the case of springs, the only reactive damper force or 
torque acting external t o  the nest is the one defined at hinge point k - 1. 

Assume that Tm is a free coordinate vector defined a t  hinge point k - I and that the 
relative motion about or  along qrn is retarded by a linear viscous damper. 

Let 

Dm = damping coefficient of the linear viscous damper which retards 
motion about or along the free coordinate vector Zfn!; 

then 

- Dm < am = damping torqu3 (force) associated with relative angular (translational) 
velocity em of the contiguous bodies k and J(k) about (along) the 
free coordinate vector ?(,, . 

It follows that the net damping torque (force) at  hinge point k - 1 is 



This vector quantity must be added to  the kth row of [PI]. 

Similarly, if the momentum wheel n is dissipatively coupled to the body in which it is 
imbedded, the damping torque 

where 
m = N F - M  + n, 

must be added to  the nth row of [@H2). 

MOTOR COUPLING OF CONTIGUOUS BODIES 

Motors may be used to  actively control the relative orientations of contiguous bodies; 
they may also be used to  control the relative rates of momentum wheels. In most 
practical problems of interest, the motor torques are defined as the outputs of an active 
control system; the control system makes use of various system state variables and control 
laws t o  defme the appropriate motor torques required to achieve a predefinable 
objective. 

Let Tm be the free coordinate vector between bodies J(k) and k about which a motor 
exists. Furthermore, let 

CL, = scalar magnitude of the motor torque to be applied by the motor 
about the free coordinate vector Tim ; 

then 

CL, Ti' = motor torqtie applied about free vector Tm to  body k .  

It follows that the net motor torque at hinge point k-1 is 

This vector quantity must be added to  the kth row of (cl] . 
Similarly, if the momentum wheel n is coupled by a motor to the body in which it 1s 
imbedded, the motor torque 



where 

must be added to the nth row of (tJjH2]. 

LOCALLY APPLIED FORCES 

The type of locally applied forces which most often occur in satellite simulation are those 
attributable to gas jet firings. The location and force of these gas jets are defmable. Let 

+ 
R ~ , ~  = radius vector from the center-of-mass of body A to  gas jet J which is 

located on body A. 
+ 

= force associated with gas jnt J of body A when fired. 

It is perfectly admissible for the firing of these jets to be governed by a control law which 
is a function of the relative attitude motion of the system. It is also admissible for the 
force to build up as some definable function of time. 

From Equations (32), (33), and (34) it can be seen that the thruster acting on body A 
produces a force which is external to every nest of bgdies containing the body A. The 
vector quantity which must be added to  row k of (4  '1 is 

if XCS,*, 

if and keS, 

if XESk., and kS, 

i f k = N +  1 

DISTRIBUTED FORCE FIELD 

Environmental loading due to gravity, aerodynamics, solar pressure, and so forth produces 
a force field which is distributed over the N-body system. 

From Equations (18) and ( 1  9) let 
3 = resultant force acting on body A due to the distributed force 

field, and 



-b = resultant torque acting on body X due to  the distributed force field. 

Again, it follows from Equations (32), (33), and (34) that the vector quantity which must 
be added to row k of is 

For the particular example of an earth based system subject to  a uniform gravitational 
force field, the gravity force acting on body A is 

where 

g = acceleration of gravity, 
t 
Po = unit vector directed from the earth's center to  the center-of-rnass of 

the composite N-body system. 

Furthermore, since the gravitation force is distributed uniformly through the entire 
volume of each body, 

In this situation, 3, is measured from the inertial origin which does not necessarily have 
-b 

to be at the earth's center. &, is simply a unit vector, which can be expressed in any 
coordinate system that is constant in the inertial reference frame. 

ORBIT DEFINITION 

To incorporate into the formalism the ability t o  study gravity-gradient effects or to  
include earth, sun, or star sensors in an active on-board control system simulation, a 
rudimentary definition of the orbit must be made. 



Assume that the satellite is in an elliptic orbit around a spherical earth (see figure 3). 
To define the orbit, the following quantities must be given: 

a = semi-major axis of elliptic orbit, 

e = orbit eccentricity, and 

T = time of perihelion passage. 

From these quantities and elementary orbital mechanics, one may compute 

Po = distance from earth center to composite system center-of-mass, 

v = true anomaly. 

I ,ELLIPTIC ORBIT 

, PERIHELION 

Figure 3. Elliptic Orbit Notation 

Let 

Ge = earth's gravitational constant; 

then the orbit period Pe is 

the mean motion r), is 

and the mean anomaly Me is 



From Kepler's law, the eccentric anomaly El is given by 

Me = El - e sin Ee . 
It has been shown in various texts that 

and 

and 

a(1 - e2) 
Po = a (1 - e cos E,) = 

1 + e cos v 

Ee 
tan. 2 = JE tan - 2 '  

cos E, - e 
cos v = 

I - e c o s ~ , '  

Jl - r2 sin E, 
sinv = 

1 - e cos E, 

The problem is to obtain E, as a function of Me. By the method of Lagrange, Moulten 
(Reference 8) shows that 

e3 
+ - (32 sin 3 Me - 3 sin Me) 

3 ! 22 

+ .- (43 sin 4 Me - 4 23 sin 2 Me) 
4 ! z3 

es + - (s4 sin 5 Me - 5 34 sin 3 Me + 10 sin Me) 
5 ! 24 



The expression converges rapidly for small values of eccentricity and can be suitably 
truncated in application. 

In any reference frame fixed in time. relative to  an earth fixed-reference frame, the vector 
Jo from the earth's center to  the composite center-of-mass of the N-body system may be 
written as 

where the magnitude of go is defined above and the 
are trigonometric functions of v, the true anomaly. 

( 1  67) 
i t  

components of the unit vector Po 

GRAVITATIONAL FORCE FIELD FOR ORBITING SPACECRAFT 

For large orbiting spacecraft, it is improper t o  assume that the gravitational force is 
uniformly distributed through the entire structure. For a significant class of problems, 
gravity-gradient effects can influence the attitude dynamics of the spacecraft. 

+G From Newton's law of gravitation, the gravitational force F A i  acting upon the mass 
element mAJ of the body A in the N-body model of the spacecraft is 

where 

Let 

Then 

earth's gravitational constant, 

vector from the earth's center-of-mass t o  the mass element mid. 

vector from the earth's center-of-mass t o  the composite N-body system's 
ccn ter-of-mass , 
vector from composite N-body system's center-of-mass t o  the center of 
mass of body A, and 

vector from the center-of-mass of body X to the mass element mAei . 



By substitution of a truncated binomial-series expansion for the denominator of 
Equation (1 68) it follows that 

Conversion to vector-dyadic notation and deletion of second-order terms yields 

+ -b -b 

F;,~ = F;! t AF&, 

where 

and 

The resultant gravitational f o m  and torque acting on body A is obtained by a summation 
over all mass elements contained within the body. 

2 
$ 0  = irh = - 4 m A f l ; 2 f l o  

where 

-b + -, - - Cm,, i(ii,,i R,J - RA.i Rk.11 
@ A  ier 



and 

For any simulation problem in which gravitational effects must be considered, two 
approaches are available. 

a. The inertially fixed reference is chosen to be fixed at the earth's center-of-mass. 

Then re call 

= vector from inertial origin to center of mass of body 1, 

hence 

From Equation ( 154), the vector quantity to be added to row k of (cl] is 
X = k, krS, 

k = N + l .  

This approach simultaneously solves for both the orbit and the attitude dynami 
modeled spacecraft. It should be recognized, however, that digital solutions may be 
subject to significant numerical error, since the orbit parameters will differ from the 
attitudedynamics parameters by several orders of magnitude. 

b. The inertially fixed reference is chosen to be fixed at the composite system 
cmter-of-rnau In this approach, the orbit position vector 3, is defined by 
Equations (1 62) through (1 66), and 



-+ Go 
since 3, is known. FA must be deleted from I'quation ( 181) to  obtain the 
perturbing force due tu gravity-gradient effects alone. ?'lien from Equation ( 181 1. 
the vector quantity to be ilddrd t o  row k of l8'1 is 

THERMALLY iNDUCED MOTION 

The cffects of appendage deformation due t o  time-varying thermal gradients can under certain 
conditions adversely influence the attitude dynamics and at times even the attitude stability 
of spacecraft. For example see Kcfcrencc '1. 

In a directional (solar) thermal field thermal gradients across the diameter of an appendage are 
not established instantaneously. but prow exponentially to  a steady state value with a specif- 
ic therrilal time constant. The thermal gradient distribution along with the thermal cxpan- 
sion properties of the appendage define an instantaneous position of thcrmal equilibrium. 
If the appendage has finite mass and stiffness characteristics the rate at which it will actually 
move to the thcrmal equilibrium position wiil be governed by its natural frequencies of 
vibration. 

Virtually all spacecraft attitude dynamics problems attributable to  the effects of thermally- 
induced deformation stcni from the fact that, relative to  the appendage. the direction and 
nlagnitude of the solar thcrmal field changes at a system natural frequency. This chanpc in 
thermal input ciln be caused by such effects as thrce-axi:, rotational motion of the space 
craft. sliadowinp, or torsional rnotion of a torsionally weak boom. 

T o  investigate S L : ~  problcn~s a crutlc moclei of ther~nal deformation is usually sut'licient for 
worsr cast type mdyscs. Tho particular niodcling tool which has hecn successfully cm- 
pl~yclf by the author, within the conlines of N-BOD, is a thcrnial sprmp; that is. a spring 
which has a time-mying thermal equilibriulrr position. 



Assume that body k has a tendency to  thermally deform and that the defornlation can 
be adequately modeled as an angular rotation of the body about the free coordinate vector 

a, 
Let 

8: (t) = angular animtlt body k must rotate at time t about free coordinate 
--* vector q m  to  be in a staie of thermal equilibrium. 

Furthermore let the psitic:,  of thermal equilibrium 8: be governed bv the solution of the 
heat conduction equation 

where 

r,,, = thermal time constani; 

eiT = a steady state angle of thermal deformatior about a,,, (calculated 
assuming constant thermal field normal to ym ); w d  

f ( 1  = a function of kinematics which defines the changing magnitude m d  
direction of the thermal field relative to the body k fixcd rcfcrcncc. 

Then if 

K, = spring constant of the linear spring whlch restrains motion about the 
--* free coordinate vector q, , 

T + -K, ('1 - O m  ) q m  = thermal spring torque about the free coordinate rrctor in, which tends 
to drive body k to its position of thermal equilibrium. 

It follows that the net reactive thermal spring torque at rlinp point k-I is 

m @ k- l  

This vector quantity must be added to  the kth row of {@"I) . 

Goddard S p c c  F!&ht Center 
)Jltiuml Aaonruticr and Space Adminbtralion 

Greenbelt. Maryland January 1974 
630-21-7541-51 



SYMBOLS 

Semimajor axis of elliptic orbit 

Force associated with the mass of body A and its combined 
centripetal and Coriolis acceleration 

Control torql~e about free coordinate vector & 
Damping coefficient of linear viscous damper which retards motion 
about free coordinate vector 

Eccentric anomaly 

Eccentricity of elliptic orbit 

Resultant of external forces acting on body k 

Resultant force of constraint acting on body k through hinge point 
k- 1 

Resultant force acting on body k due to  all mechanisms existing 
between bodies J(k) and k at hinge point k-1 

Resultant external force applied t o  point i of body k 

Resultant of all external forces applied to  body k 
- 

Matrix operator which uses the components of quaternion At,(A, t o  
define transformation matrix [, .F,(,)]. 

Earth's gravitational constant 

Pseudo-inertia tensor of body h with respect t o  the origin of nest k - 1 
and the hinge point i - 1 

Linear momentum of body h relative to the inertial origin 

Acceleration of gravity 

Inertial angular momentum of momentum wheel m 

Relative aneular momentum of momentum wheel m 

(M X M), square matrix of free coordinate vectors along momentum 
wheel spin axes 
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Iwrn 
Inertia tensor of momentum wheel m about its centersf-mass 

LlcJ (N + 1) X M, rectangular matrix of momentum-wheel inertia tensors 

[Is] M X M, square matrix of momentum-wheel inertia tensors 

J(h) Body label of the body to  which body A is attached at hinge 
point A- 1 

Spring constant cf linear spring which restrains motion about free 
coordinate vector k 

-+ 
h , ~  Inertial angular momentum of body A relative to  the inertial origin 
-b 

Inertial angular momentum of momentum wheel m relative to its 
L ~ m , ~ m  cccl ter-of-mass 

Inertial angular momentum of body A relative to its center-of- 
mass 

M Total number of momentum wheels 

h u m )  Body label of the gyrostat in which momentum wheel m is e.iibedded 

Total mass of body X 

mh.i 
Mass of m a s  element i of body A 

Me Mean anomaly 

N Total number of rigid bodies, gyrostats, and point masses 

F Total number of free coordinate axes 

L 
Total number of locked coordinate axes 

N o  
Total number of coordinate vector triads 

T Total number of free and locked coordinate axes 

PC Orbital period 

P(h) Total number of constrained axes at hinge point A-1 of body A 
-* [g1 ,a2, . . , PN, ] Set of unit locked coordinate vectors which span the NL-dimensional 

vector space in which motion is totally constrained 

Set of unit free coordinate vectors which span the NF-dimensional 
vector space in which motion is possible 

9 Quaternion operator, which maps vectors into quaternions 



(N + 1 ) X (N, - M), rectangular matrix of free coordinate vectors 

Position vector from center-of-mass of body A to mass point i of 
body A 

Set of all rigid-body, body labels 

Set of all point-mass body labels 

Set of all body labels 

Set of all body labels of those bodies outboard of hinge point k - 1, 
relative to hody 1. Body labels of those bodies in nest k - 1 

Set of all body labels associated with thow bodies lying on the 
topological path from hinge point k - 1 to the center-of-mass of 
body A 

Tensor operator which maps vectors into skew symnietric tensors of 
raqk 2, dyads 

Time of periheli~n r.issage 

Transformation matrix, takes vectors from computing frame to 
body A fixed coordinates 

Transformation matrix, takes vectors from body J(X) to body A fixed 
coordinates in the nominal Lei0 stress state 

Transformation matrix, takes vectors from body J(h) to body X fixed 
coordinates at time zero 

True anomaly 

Dyad in *.he k" row, izh column of [ X I  

(N  + 1) X (N  + l), matrix of inertia and pseudo-inertia dyads 

Coordinate axes defined at inertial origin 

Coordinate axes fixed in body A at hinge point A - 1 

Position vector from hinge point X - 1 of body X to the 
center of mass of body X 

Position vector from hinge point X - 1 t o  nominal position of 
point mass A 

Position vector from inertial origin to composite N-body system 
cen ter-of-mass 



Unit vector aligned with 3, 
Position vector from inertial origin to  hinge point 0 of body 1 

Position vector from hinge point J(X) - 1 to  hinge point X - 1 of 
body X 

Position vector froni inertial origin t o  center-of-mass of body X 

Position vector from hinge point k t o  the center-of-mass of body X 

Skew symmetric tensor form of the 

Position vector from composite N-body system center-of-mass to  the 
center-of-mass of body X 

Rotation quaternion 

Mean motion 

(N + 1 ) X 1 ,  column matrix of forces and torques associated with 
centripetal and Coriolis acceleration effects 

( N  + 1) X 1, column matrix of torques associated with the inertial 
angular momentum of rigid bodies about their own centers-of-mass 

M X 1, column matrix of torques associated with the inertial 
angular momentum of momentum wheels about their own centers- 
of-mass 

Displacement about or along free coordinate vector Tm 

( M  X l ) ,  column matrix of all Om m = NF - M + 1, . . . , NF 

Inertia tensor of body X about its center-of-mass 

Resultani torque acting on body k due to external causes 

Resultant of external torques acting on body k 

Resultant of external torques acting cn  momentum wheel m 

Resultant torques of constraint acting on  body k through hinge 
point k - 1 



Resultant torque of constraint acting on momentum wheel m 

Resultant torque acting on body k due to all mechanisms existing 
between bodies J(k) and k at hinge point k - 1 

(N + 1) X 1, column matrix of forces and torques of constraint 
acting between bodies 

M X 1, column matrix of constramt torques acting on momentum 
wheels 

(N + 1 ) X 1, column matrix of forces and torques due to mechanisms 
acting between bodies 

M X 1, column matrix of torques due to mechanisms acting on 
momentum wheels 

(N + 1) X 1, columr. matrix of forces and torques external t o  total 
system acting on rigid bodies and point masses 

Angular velocity of body A fixed coordinates relative t o  the 
computing frame fixed coordinates 

Angular velocity of body A fixed coordinates relative to  inertially 
fixed coordinates 

Angular velocity of body A fixed coordinates relative to  body J(A) 
fixed coordinates 

(N + 1 ) X 1, column matrix of quantities SAY A = 1, . . . , N + 1 

( N +  1)X l ,columnmatrixofquantit ies~, ,  A =  I , .  . . , N +  I 

Inertial angular velocity of momentum wheel m 

Relative angular velocity of momentum wheel m 

Column matrix 

Square matrix 

Rectangular matrix 
+ 

Vector R 
+ 

3 X 1 matrix of components of vector R relative to  body A fixed 
coordinates 

-P 
Quaternion of vector R relative to body A fixed coordinates 



-* 
Time derivative of vector R relative to inertial fixed reference frame 

-* 
Time derivative of vector R relative to local reference frame i 

9 
Same as R when no confusion as to which local reference frame 
differentiation is with respect to 

Unit dyad 

Summation over all indices i contained in the set S,-, 

Summation over all indices i of vectors defined at hinge point k - 1 

Multiple product over all indices k contained in set S,,,, in 
decreasing order of magnitude 
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APPENDIX 

QUATERNION TECHNIQUES 

The quaternions of Hamilton constitute a four-dimensional vector space, over the field of 
real numbers, with respect to a basis of four special vectors denoted by 

The algebreic operations for quaternions are the usual two vector operations of vector 
addition and s c a l ~ r  multiplication, plus the overation of quaternion multiplication. 

In four dimension vector space the q ~ a t e r n i m  Fcan be defmed as 

where 

is the set of four linearly independent basis quaterninns and 

are real numbers. The product of any two of the basis quaternions is such that 1 acts as 
the identity and the multiplication table 

is satisfied. 

Quaternions are most commonly used in conjunction with vectors t o  describe the effect 
of either a rotation of a vector or a transformation of coordinates. Accordingly, an 
operator is defined which takes vectors into quaternions and vice versa. 
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Let 

3 = quaternion operatar which takes vectors into quaternions 

and 

2-' = inverse quaternion operator which maps quaternions into vectors 

If 

{;I ,(A) = [;} = column natrix of the components of the vector + R relative to 
the body J(h) fixed coordinate axes, 

,(A) 

(A-6) 

then 

-+ 
= quaternion representation of the vector R given (A-7) 

relative to body J(h) fixed coordinates 

where 

and 

Euler has shown that an arbitrary rotation of a rigid body about a fixed point is always 
equivalent to a rotation about a line passing through the point. It  follows that the relative 
orientation of the coordinate axes fixed in body J(h) and in body X can be completely 
dcfined by specifying the direction of the line about which and the angle through which 
the coordinate axes (xi('), xi("), x ~ ( ~ ) I  must be rotated so that its axes are respectively 
parallel to those of the coordinate axes { X:, Xt, Xt . 

Let 

= The unit vector aligned in a right handed sense along the axis about which 
the coordinate axes ( ~ : ( 4 ,  x:("I are rotated, and 



6 = Angle through which the coordinate ares  (X:('), xi(") are 
rotated about so as to be respectively aligned with the coordinate 
axes (x: . X: , X: 1. 

+ 
Several texts have shown that the components of R relative to  body X fixed coordinates 
can be obtained from the quaternion equation 

and 

- 
By expressing J(..,)fA as 

(A- 1 3) 

it is shown by the direct quaternion multiplication of Equation (A-10) that 

x l F ,  + y1F2 + z1F3 = 

- 
[(ei + e: - e i  - e:) x + 2 (el e2 - eo e,) y + 2 (c, e3 + co e,) z]  t ,  



or  in matrix notation 

where 

[ J 1 = transforn~ation matrix which takes vectors from body A fixed 
coordinates into body J(A) fixed coordinates. 

From this development it c m  be seen that a matrix operator J c a n  be defined such that 
for the qua ternion 

e i  t e i  - e: - e: 2 (el e2 - e, 5 )  2 (el e3 + e0 e l )  

2 (eo e3 t e l  e2)  e: - e: + e: - e: 2 (e2 e, - eo e l )  I (A- 1 8) 

2 ( e l e 3 - e o e , )  2 ( e 2 e 3 * e 0 e l )  e : - e : - e : * e :  

Note that from the above definition 

In many practical problems it is infeasible t o  define the particular eigenvector q and angle 
8 which takes body J(A) fixed axes directly into body A fixed axes. It is possible. however, 
to  define several successive rotations through given angles and about given axes which will 
bring the two coordinate axes into alignment. 

Suppose for example that m coordinate rotations are required to  conveniently rotate 
body J(X) axes into body X axes. The rotations are as follows: 



a. Rotate body J(X) axes about q, tllm anglc 8 ,  into intermediate reference 
frame 1,. 

b. Rotaic f r a m  i ,  about T2 thru angle 8, into intermediate reference frame I, .  
--* 

c. Prxeed  sequentially until frame I,-, is rotated about b thru angle Om into 
body X fixed frame. 

In quaternior! notation this rotatior? sequence is given by 

where 

7 = cor 0,/2 t .(I< 1 ,i- ,) sin 0,/2 
Ii- 1 'i 

and 

. components of vector relative to  the intermediate reference frame I&, .  

The resultant quaternion which takes body J(X) axes directly into body X axes is 
therefore given by the quaternicn product 

The application of quaternions t o  the development of coordinate-transfornlation matrices 
has been demonstrated in the preceeding paragraphs. Quaternions arc also ussd to define 
vector transformation matrices; that is, a quaternion equatJon can be defined which 
describes the effect of the rotatioqof an a rb i t r ip  vector K about an eigcnvector 7 
through the angle 8 into a vector R ,  . If both K and are defined in the body X fixed 
coordinates, then 

where 



-b 

Note that the culnporlcnts of the vector K, arc givcn relative to the same rcferencc 
frame - in which R and d arc given. Furtllcr~nol-e, by miking Ilsr of the matrix opcr;it<~r 
, P ( t )  defined by Eqlrrctions (A- 1 8 1. Equ;ition (14-23 can be ex prcsscd in matrix notation 
as 

Direct comparison o f  Equations (A- 1 6 )  and ( A-27) rcvcals that  thc transpose of the 
coordinate transformation matrix is the vectcr transformation matrix. 


